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The effects of lead on the immune system
and the nervous system have been studied
extensively but separately. The nervous sys-
tem was believed to be an immunologically
privileged site because it lacks lymphatic
drainage and is shielded from the blood by
the blood-brain barrier and the blood-
nerve barrier. These barriers are composed
of specialized vasculature consisting of
endothelial cells with tight junctions and
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activation of different types of T-helper
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aduced neuro- sets differ with respect to cytokines secret-
results s_ggest ed and cells activated. Some antigens can
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Ad GAP. y enhance immune processes (15) which lead
I, teur}iPt to the production of autoantibodies. For
* ~ example, there is evidence that lead directly

activates B-cells (16) and increases B-
cell/Th2 cell interactions which, in turn,
may lead to disregulated B cell responses
and autoimmune reactions (17).

We hypothesize that lead enhances the
immunogenicity of neural proteins and
thereby induces an autoimmune response
to proteins of nervous system origin. To

test this hypothesis, we immunized mice
with native or lead-altered MBP or GFAP
and measured the levels of antibodies pro-
duced in the sera of these mice using
ELISA. Supernatants from lectin-stimulat-
ed splenocytes were also examined for anti-
body titers against MBP and GFAP and
for IL-2 and IL-6 levels. IL-2 is secreted by
Thl cells and performs a number of func-
tions including promoting the secretion of
antibodies by activated B-cells (14). IL-6 is
secreted by a number of immune-respon-
sive cells and is believed to play a role in
the differentiation of B-cells to antibody-
producing plasma cells (14).

Methods
Female CBA/J mice Uackson Laboratories,
Bar Harbor, Maine), 10-12 weeks old,
were quarantined for 2 weeks and accli-
mated to a 12-hr light/dark cycle. The
mice were housed in groups of three in
polycarbonate boxes containing wood-chip
bedding with stainless-steel lids. Animals
were randomly distributed in three groups
of six mice per group. Food (Purina
Rodent Chow, Ralston Purina, St. Louis,
Missouri) and distilled water were provid-
ed ad libitum.

We immunized mice with protein or
lead-altered protein in 0.9% saline. The
proteins used were MBP (Sigma, St. Louis,
Missouri) and GFAP (IBL Research,
Cambridge, Massachusetts). Lead-altered
proteins were produced by incubating,
with gentle agitation, a 1:100 molar ratio
of native protein with lead acetate
(PbOAc) in saline at 2-8°C for 24 hr.
Untreated native proteins were handled in
an identical manner (i.e., they were incu-
bated in saline with gentle agitation for 24
hr at 2-80C). For MBP, protein solutions
were passed through a Sephadex column
(Pharmacia, Piscataway, New Jersey) to
remove any unbound lead, and these solu-
tions were used for immunizations. GFAP
solutions were not passed through a
Sephadex column because preliminary
studies demonstrated a significant reduc-
tion in protein recovery. Instead, a fourth
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group of mice was added to the protocol
and treated with the same amount of
PbOAc used to alter the GFAP. Mice
received intraperitoneal inoculations on
days 0, 14, and 28 with either saline,
PbOAc (GFAP protocol only), 25 pg
native protein, or 25 pg lead-altered pro-
tein. Ten days after the last injection, ani-
mals were anesthetized and blood was
removed via cardiac puncture. Serum was
obtained from the blood and stored at
-70°C until use in ELISAs. Spleens were
also removed and used to make single-cell
suspensions for lymphoproliferative assays
and for the production of lectin-stimulated
supernatants.

Spleens were disrupted by forcing them
through stainless-steel sieves into medium
199 (M199; BioWhittaker, Walkersville,
Maryland). Clumps were allowed to settle,
and the cells were washed once. We count-
ed the cells and resuspended them in
M199 supplemented with 5% fetal bovine
serum, 1% 2-mercaptoethanol solution,
1% nonessential amino acids, 1% sodium
pyruvate, 0.2% gentamycin, and 0.1% L-
glutamine. Cells were cultured at 2 x 106
cells/ml in flat-bottomed 96-well
microtiter plates (Falcon Plastics, Becton
Dickson, Lincoln Park, New Jersey) for the
lymphoproliferative assays and in flat-bot-
tomed 24-well microtiter plates (Flow
Laboratories, McLean, Virginia) for the
production of cell-free supernatants.

Proliferative responses to the B-cell
mitogen lipopolysaccharide (LPS; Sigma)
and T-cell mitogen concanavalin A (Con-
A, Sigma) were determined using MTT-
tetrazolium (Sigma). Splenocytes were
incubated in the presence of LPS (100
pg/ml) or Con-A (16 pg/ml) at 370C in a
fully humidified 5% CO2 atmosphere. At
72 hr, we added MTT-tetrazolium to all
wells and incubated the cells an additional
4.5 hr. We added 10% SDS-0.01 N HCl
to each well and incubated the plates
overnight at 37°C. The plates were then
read in a microtiter plate reader at 600 nm.

Cell-free supernatants were obtained
from lymphocytes stimulated with either
Con-A or LPS. After 48 hr (Con-A) or 72
hr (LPS), cells were centrifuged at 1500
rpm for 20 min, and cell-free supernatants
were collected. Supernatants were frozen at
-70°C until used in ELISAs.

Antibody assays were conducted using
serum samples and supernatant samples
from LPS-stimulated splenocytes. IgG and
IgM ELISAs for anti-MBP or anti-GFAP
were performed. Additionally, antikeratin
titers were measured by ELISA to ensure
that the antibodies produced were target
specific. Antigen (MBP, GFAP, or keratin)
was used to coat Immulon 2 flat-bottomed
microtiter plates (Fisher, Pittsburg, PA).
We washed plates to remove free antigen

and blocked antigen with 0.5% nonfat dry
milk solution to prevent nonspecific bind-
ing of proteins. Plates were washed and
serial dilutions of standards (monoclonal
mouse anti-MBP or anti-GFAP;
Boehringer-Mannheim, Indianapolis,
Indiana) or samples were incubated in
antigen-coated wells. After the incubation
period, we washed unbound proteins away
and added affinity-purified alkaline phos-
phatase conjugated anti-mouse IgG (H+L)
or IgM (p) (Jackson Immunoresearch,
West Grove, Pennsylvania) to the plates.
After incubation and subsequent washing,
p-nitrophenylphosphate in diethanolamine
buffer (Bio-Rad, Hercules, California) was
added. We stopped the color reaction with
0.4 N NaOH solution and read the plates
in a microtiter plate reader at 405 nm. For
each assay, standard curves were generated
using commercially available, pure mono-
clonal antibodies against MBP and GFAP.
The ranges of the 8-point standard curves
were 0-200 ng/ml. Linear regressions were
fit to the curves by least-squares analysis.
Since only IgG standards were available,
the IgM concentrations are reported as
IgG equivalents. Antibody concentrations
were determined by subtracting blank opti-
cal density from a given sample optical
density and inserting the resultant value
into the corresponding standard equation.

Cell-free supernatants from Con A-
stimulated splenocytes were analyzed for
IL-2 using the Intertest 2X mouse ELISA
kit (Genzyme Corporation, Cambridge,
Massachusetts). IL-6 levels were quantified
in cell-free supernatants from LPS-stimu-
lated splenocytes. High binding ELISA
plates (Fisher) were coated with purified
murine anti-IL-6 (Pharmingen, San Diego,
California) and incubated overnight at
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Figure 1. Antimyelin basic protein (MBP) titers
(mean ± SE) in sera of mice (n = 6/group) immu-
nized with MBP and lead-altered MBP. Mice
treated with lead-altered MBP show sera anti-
MBP IgG titers that are significantly different from
control (*p = 0.01) and native MBP-immunized
mice (*p = 0.05). For this and all pertinent figures,
IgM concentrations are reported as IgG equiva-
lents.

0-10°C. After washing and blocking, stan-
dards/samples were added and incubated
overnight at 0-10°C. After washing, plates
were incubated with biotinylated murine
anti-IL-6 (Pharmingen). Plates were
washed again and incubated with avidin-
peroxidase. After subsequent washing,
ABTS substrate (Sigma) was added. The
color reaction was stopped with sodium
dodecyl sulfate in N,N-dimethylfor-
mamide and read in a microtiter plate
reader at 405 nm.

Data were analyzed by ANOVA fol-
lowed by the Dunnett's t -test for multi-
ple comparisons (18). Statistical signifi-
cance was accepted at the p < 0.05 level.

Results
Mice were immunized with saline, MBP or
lead-altered MBP (MBP/Pb) and anti-
MBP antibodies were detected by ELISA
in serum or cell-free supernatant of LPS-
stimulated splenocytes 10 days after the
last immunization. Anti-MBP titers detect-
ed in the sera of these mice are shown in
Figure 1. Mice treated with lead-altered
MBP had sera anti-MBP IgG titers that
were significantly different from both con-
trol (p = 0.01) and native MBP immunized
mice (p = 0.05). Mice immunized with
native MBP did not show a significant
increase in titers over control. For all
groups, IgM titers were not different from
control levels. There were background lev-
els for both IgG and IgM titers of anti-
MBP antibodies in control animals.

Anti-MBP antibodies were also deter-
mined in the LPS-stimulated splenic super-
natants (Fig. 2). Mice immunized with
lead-altered MBP showed supernatant anti-
MBP IgG titers that were significantly dif-
ferent from control (p = 0.05) but not
native MBP immunized mice. Unlike the
sera responses, anti-MBP IgM titers were
higher than IgG titers in the supernatants
isolated from LPS-stimulated splenocytes.
However, significantly elevated IgM titers
were not detected in any group.

Proliferative responses to both Con-A
and LPS mitogens were determined using
the MTT assay. As shown in Figure 3,
mice immunized with lead-altered MBP
exhibited significant increases in Con-A-
induced T-cell proliferation (p = 0.01) as
compared to control. A significant increase
was not seen in mice immunized with
native MBP. There were no treatment-
related increases in LPS-induced B-cell
proliferation in any group.

Levels of IL-2 and IL-6 were quanti-
fied in supernatants of lectin-stimulated
splenocytes. Mice immunized with lead-
altered MBP exhibited increased IL-6 lev-
els that were significantly different from
control (p = 0.05). However, the levels of
IL-2 produced by stimulated splenocytes
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from these animals were not different
from control values (Fig. 4).

Immunizations were also conducted
with another lead-altered neural protein,
GFAP. The treatment protocol used for
GFAP differed from that used for MBP in
that a group of mice exposed to PbOAc
alone was added. This was done because
recovery of lead-altered GFAP from the
Sephadex columns was poor. GFAP-
immunized mice exhibited responses in the
sera that were analogous to those observed
in the sera of MBP-immunized mice. Mice
immunized with lead-altered GFAP
showed sera anti-GFAP IgG titers that
were statistically different from control (p
= 0.01), lead alone (p = 0.01) and native
GFAP-immunized mice (p = 0.05). There
were no elevated titers of anti-GFAP IgM
in the sera (Fig. 5).

Lectin-stimulated supernatants from
GFAP-immunized mice were also analyzed
for the production of anti-GFAP antibodies
and for IL-2 and IL-6 levels. The only
observed changes occurred in mice treated
with native GFAP. These animals exhibited
supernatant anti-GFAP IgG titers that were
significantly different from controls (p =
0.01). Mice immunized with lead-altered
GFAP did not show an increase in anti-
GFAP IgG titers. In addition, there were no
increases in anti-GFAP IgM titers in any
group (Fig. 6). Stimulated splenocytes taken
from mice treated with lead-altered GFAP
showed no increases in either IL-2 or IL-6
production (Fig. 4). The lymphoprolifera-
tion assays showed no increases in the pro-
liferation of splenocytes stimulated with
either Con-A or LPS (data not shown).

Serum antibodies did not react with
keratin for any of the animals in any
group, confirming that the ELISA reac-
tions were target specific (data not shown).

Discussion
The present study shows that lead enhances
the immunogenicity of two nervous system
proteins, MBP and GFAP. These results
support our hypothesis that the progression
of lead-induced neurotoxicity may be due
to the production of autoantibodies against
neural proteins provoked by a lead-induced
enhancement of the immunogenicity of
those proteins. These results also comple-
ment our earlier work showing that lead
exposure induces autoantibody titers
against nervous system proteins, including
MBP and GFAP (11,1X.

Usually, the first immmunoglobulin to
occur after initial antigen contact is IgM
(13). In many T-cell independent respons-
es, IgM remains the primary immunoglob-
ulin. However, isotype switching to IgG
occurs during T-dependent immune
responses (13). In this study, enhanced
IgG antibody titers were seen in the sera,

whereas IgM titers in the sera were
unchanged from control values. This indi-
rect evidence suggests a T-cell dependent
response for the generation of antibodies
against both lead-altered MBP and GFAP.

MBP is a negatively charged 18 kDa
protein of approximately 170 amino acid
residues (19. It is distinctive for its lack of
sulfhydryl groups (19). In contrast, GFAP
is a positively charged 52 kDa protein
which contains methionine and cysteine
groups (20). These differences between the
proteins suggest that lead may be binding
and altering the immunogenicity of each in
a different manner. The lead ion carries a
double positive charge and may bind to
MBP in a charge neutralization process.
Because of the double positive charge, it is
also possible for lead to cross-link between
negative charges on two different MBP
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Figure 2. Antimyelin basic protein (MBP) titers
(mean ± SE) (n = 6/group) in lipolysaccharide
(LPS)-stimulated splenic supernatants of mice
immunized with MBP and lead-altered MBP.
Mice treated with lead-altered MBP show super-
natant anti-MBP IgG titers that are significantly
different from control mice (*p = 0.05).
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Figure 4. Interleukin (IL)-2 and IL-6 levels (mean ±
SE) (n = 6/group) in lectin-stimulated splenocyte
supernatants from mice immunized with either
lead-altered myelin basic protein (MBP) or lead-
altered glial fibrillary acidic protein (GFAP). Mice
treated with lead-altered MBP show supernatant
IL-6 levels that are significantly different from
control mice (*p = 0.05).

molecules making the lead-altered form
more immunogenic in this manner. In
contrast, because GFAP is positively
charged but contains sulfhydryl groups, it
is possible that lead is binding to a methio-
nine or cysteine residue and perhaps
unmasking an epitope, making the lead-
altered form of GFAP more immunogenic.
These potential differences in the way lead
binds to MBP and GFAP may produce
different types of antigenic determinants
on the two lead-altered proteins causing
antibodies to be generated against the two
lead-altered proteins through different
mechanisms. The observed differences
between the responses generated by the
lead-altered forms of MBP and GFAP in
the supernatants of lectin-stimulated
splenocytes provide evidence for this
proposition.
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Figure 3. Lymphoproliferation in mice (mean ± SE)
(n = 6/group) immunized with myelin basic protein
(MBP) and lead-altered MBP. Mice treated with
lead-altered MBP exhibit significant increases in
Con-A induced T-cell proliferation (*p = 0.01)
compared to control.
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Figure 5. Antiglial fibrillary acidic protein (GFAP)
titers (mean ± SE) in sera of mice (n = 8/group)
immunized with GFAP and lead-altered GFAP.
Mice treated with lead-altered GFAP show sera
anti-GFAP IgG titers that are significantly differ-
ent from control (* p = 0.01) and lead alone (*p =
0.01), and native GFAP-immunized mice (*p =
0.05).
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Figure 6. Antiglial fibrillary acidic protein (GFAP)
titers (mean ± SE) (n = 6/group) in lipopolysaccha-
ride (LPS)-stimulated splenic supernatants of
mice immunized with GFAP and lead-altered
GFAP. Mice treated with native GFAP show
supernatant anti-GFAP IgG titers that are signifi-
cantly different from control mice (*p = 0.01).

In the splenic supernatants, Con-A-
induced proliferation was increased in mice
treated with lead-altered MBP (Fig. 3) but
not with lead-altered GFAP (data not
shown). Further, there was a significant
increase in IL-6 production by LPS-stimu-
lated splenocytes of mice immunized with
lead-altered MBP but not with lead-altered
GFAP (Fig. 4). In addition, anti-MBP IgG
antibody titers were elevated in the super-
natants of LPS-stimulated splenocytes of
mice immunized with lead-altered MBP,
but an analogous response was not seen in
the splenocyte supernatants of mice immu-
nized with lead-altered GFAP (Figs. 2 and
6). Since there is indirect evidence that
both lead-altered proteins induce antibody
production through T-cell-dependent
mechanisms, the splenic supernatant
responses suggest that different subsets of
T-helper cells may be involved in the gen-
eration of antibodies by the two different
lead-altered proteins.

It is known that immunization with
protein antigens leads to the activation of
different types of helper T-cells: Thl and
Th2 (14). Th2 cells are considered optimal
helpers for B-cell responses, while Thl
cells are not considered efficient helpers
(17). These two subtypes differentially reg-
ulate immune responses via the cytokines
they secrete. Thl cells secrete IL-2 and
inteferon-g, whereas Th2 cells secrete IL-4,
-5, -6, and -10 (21). Of these cytokines,
IL-2 and IL-6 were selected for analyses in
the present studies because they stimulate
antibody secretion by B-cells (22). Our
evidence suggests that lead-altered MBP
activates different cytokine-secreting cells
from lead-altered GFAP, as elevated IL-6
levels were found in the splenic super-
natants of lead-altered MBP-treated mice

but not in the supernatants of lead-altered
GFAP-treated mice.

Because the present study demonstrates
that lead enhances the immunogenicity of
two neural proteins, it raises the possibility
that lead, and perhaps other metals, may
be involved in the pathogenesis of
immunologically mediated neurological
diseases. Several of these diseases manifest
autoantibodies to neural proteins at some
stage of the disorder. For example, in both
humans and experimental animals, MBP is
the target antigen for immune processes
leading to autoimmune encephalomyelitis
(23). Autoantibodies against MBP as well
as GFAP have been found in the cere-
brospinal fluid (CSF) of multiple sclerosis
patients (24,25). In addition, stimulated
B-cells from the CSF of multiple sclerosis
patients produce antibodies against MBP
(26). Autoantibodies against MBP and
GFAP are also observed in other disorders.
For example, increased anti-MBP titers are
seen in patients with subacute sclerosing
panencephalitis and post-infectious
encephalomyelitis (27). Patients with
Lyme neuroborreliosis also exhibit elevated
CSF anti-MBP titers (28). Autoantibodies
against MBP as well as against GFAP are
seen in the serum of patients with
Alzheimer's disease (29-31). Although
Alzheimer's disease primarily affects neu-
rons, there is secondary involvement of
myelin; therefore, humoral immune reac-
tions to MBP might develop as the disease
progresses (29). In addition, GFAP has
been shown to stimulate proliferation and
immunoglobulin synthesis by lymphocytes
from patients with Alzheimer's disease (4).
Serum anti-GFAP autoantibodies are seen
in patients suffering from senile dementias
and in healthy, aging people (32). Because
of the presence of autoantibodies against
nervous system proteins in several neuro-
logical disorders and because of the sus-
pected involvement of environmental pol-
lutants in the pathogenesis of neurological
diseases, it is reasonable to propose a mech-
anism whereby metal alteration of neural
proteins leads to autoantibody production
against neural structures, causing progres-
sive degeneration of the nervous system.

Finally, it should be pointed out that
autoantibodies against neural proteins have
the potential to serve as early biomarkers of
impending neurological disease because
they may appear before traditional patho-
logical manifestations. If our hypothesis is
correct and metals induce or intensify
immune responses against neural struc-
tures, neurotypic autoantibodies have the
potential to act as early and sensitive bio-
markers for the effects of neurotoxic met-
als. Studies concerned with the timing of
metal-induced neurotoxicity versus the
timing of the appearance of neurotypic

antibodies would address this question and
will be the subject of a fiture report.
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Volume 102, Supplement 4, contains the proceedings of the Symposium of Risk
Assessment of Urban Air: Emissions, Exposure, Risk Identification, and Risk
Quantitation, held May 31-June 2, 1992, in Stockholm, Sweden. The main objec-
tive of the meeting was to develop general conclusions about the health effects of
nonregulated emissions from vehicles and urban air. Sponsors for the conference were
the Swedish Cancer Society, the Center for Nutrition and Toxicology, the Swedish
Environmental Protection Agency, the Swedish Petroleum Institute, the Swedish
National Board for Industrial and Technical Development, and the Stockholm City
Council.
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